If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2-90x-108=0
a = 42; b = -90; c = -108;
Δ = b2-4ac
Δ = -902-4·42·(-108)
Δ = 26244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{26244}=162$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-162}{2*42}=\frac{-72}{84} =-6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+162}{2*42}=\frac{252}{84} =3 $
| x+4=8x+1-1+11 | | 12x+16=3x | | h-12.6=55-h | | C=85x+60, | | 6c+5=-7-2-8c | | -x+28=x | | 14u+6=10+14u-4 | | 117=9(w+4) | | -7u=-8u+10 | | 36n^2-54n+8=0 | | 4(2n+3)=8n | | 7(3h-2)=49 | | 14=-4x+7x-4 | | -4q-6=6+2q | | 12+a=a-8+4a | | 33-11=3+3m-1-m | | −2(-10)−10y=10 | | 18−2x=4x | | 4t+5+8t=41 | | 11x-34=15x-21 | | -3y=-7y-8 | | 5x+20+2x+10=180 | | 14-3(5x-12)=1-(2x+1) | | 36-5c=6 | | 40-4b=20 | | 8a-4=-10a-50 | | 3x+5+x-7=80 | | -9m=-6-3m | | 3x+5+x–7=80 | | 14+4n=8n-3(n-4) | | 5b-b=1 | | 8-4x(-7+5)=-116 |